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Measurement of Query Processing

Complexity classes are usually defined for Decision (yes/no) problems.

Queries may have a large output.

It would be unfair to count the size of the output as complexity.

We therefore consider the following decision problems, which areall
computationally equivalent purposes (logspace equivalent).

Boolean Queries D |= Q?
The Query of Tuple problem (QOT)t ∈ Q(D)?
The Query-Emptiness problem Q(D) 6= ∅
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Measurement of Query Processing

Data Complexity Q(D): where D is considered as input, while Q as fixed.

Query Complexity Q(D): where Q is considered as input, while D as fixed.

Combined Complexity Q(D): both D and Q are considered as input.
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QBF Problem

QBF (Quantified Boolean Formulas) (a.k.a. QSAT)

Q1x1Q2x2 . . .Qnxnφ(x1, x2, . . . , xn)

Qi ∈ {∃,∀} is a quantifier, φ is a Boolean formula in CNF; Q1 . . .Qn alternates
between ∃ and ∀.
For instance, ∃x1∀x2 . . . ∃xn
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QBF Example

∃x1∀x2∃x3(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

∃x1∀x2∃x3(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
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QBF Problem - Algorithm
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QBF Problem - Algorithm

Depth of recursion: n, at each step the stack size is poly(n)
→ QBF in PSPACE

Dr. Fang Wei 30. Mai 2011 Seite 7



Foundations of Query Languages SS 2011 4. SQL, First Order Queries 4.2. Complexity

Logspace Transducer

A logspace transducer is a Turing machine with a read-only input tape, a
write-only output tape, and a read/write work tape.

The work tape may contain O(log n) symbols.

A logspace transducer M computes a function f : Σ∗ → Σ∗, where f (w) is
the string remaining on the output tape after M halts when it is started
with w on its input tape.

f is a logspace computable function
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Logspace computation

Some capabilities of logspace machines

Maintain (a constant number) of counters on the worktape, and increment
or decrement such counter

Locate particular items of a well-structured input (integers, list item) via
pointers consisting of input-tape address

Access, process and compare input items in a bit-by-bit fashion

Binary integer addition, subtraction, comparing data items or lists, copying data
items, searching, sorting, etc.
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Language in Logspace

A = {0k1k |k ≥ 0}

is a member of Logspace.

on the work tape, maintain a counter C , and one pointer P to the input
tape

Read the content of what P is pointing to; increase the counter as long as
the content is 0 (move P to right)

As soon as the first 1 is met, start decreasing the counter

Accept if read the end and the counter is set to 0, reject otherwise

Dr. Fang Wei 30. Mai 2011 Seite 10



Foundations of Query Languages SS 2011 4. SQL, First Order Queries 4.2. Complexity

Join Operation in Logspace

Join of two relations r and s on attribute A

Maintain two tuple pointers τr and τs

Outer loop: move τr to point successively to each tuple of r

For each such tuple tr , an inner loop makes τs successively point to each
tuple ts

For each combination of tuples tr and ts , identify the fields corresponding to
attribute A and check, bit by bit, where the A-value of tr and ts are equal

If yes, the relevant part of tr and ts are (bitwise) copied to the output tape

Space used on work tape: 4 pointers + 2 + a constant number of counters
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Complexity of FO Queries

Theorem

Evaluating Boolean FO (or RA) queries is as follows:

PSPACE complete (combined complexity)

PSPACE complete (query complexity)

in LOGSPACE (data complexity)

The same complexity results apply to the Query-emptiness problem and to the
QOT-Problem
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FO Evaluation
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FO Complexity

m(log m + m log n)

Combined complexity (both m and n as input):
m(log m + m log n)→ PSPACE

Data complexity (n as input, m as constant):
log n→ LOGSPACE

Query complexity: (m as input, n as constant) :
m2 → PSPACE
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FO Complexity: Combined Complexity

PSPACE hardness proof: polynomial reduction from QBF problem (PSPACE
complete)

dom: {1, 0}
Database: true(1), false(0)

∃x1∀x2∃x3(x1 ∨ ¬x2 ∨ x3) ∧ . . .
∃x1∀x2∃x3(true(x1) ∨ ¬false(x2) ∨ true(x3)) ∧ . . .

Dr. Fang Wei 30. Mai 2011 Seite 15



Foundations of Query Languages SS 2011 4. SQL, First Order Queries 4.2. Complexity

Data Complexity

Data complexity (n as input, m as constant): log n → in Logspace
Can we get a better upper bound?

AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ NC2

We first need to define circuit complexity classes.
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Boolean Circuits

size= # gates

depth= longest path from input to output

formula(or expression): graph is a tree

can build circuit family that decides L
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Circuit Family

What is the function of this circuit?
It accepts the language that consists of strings with at least two 1’s.
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Circuit Family

What is the function of this circuit?
It accepts the language that consists of strings with at least two 1’s.
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Circuit Family

What is the function of this circuit?
It accepts the language that consists of strings with at least two 1’s.
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Circuit Family
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Circuit Family
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Circuit Family

2 steps, O(n) processors
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Parallelism

uniform circuits allow refinement of polynomial time:
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Small Depth Circuit

A small depth circuit is a polynomial-size circuit whose depth is poly-logarithmic
in its size. That is: a circuit with
size=poly(n) and depth=O(logk n)
Such circuits capture the notion of efficient parallel computation.
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NC and AC

NC =
⋃

k NC k (Nick’s Class) class of languages decided by families of
fan-in 2 circuits {Cn} s.t.
size(Cn)=poly(n) and depth(Cn)=O(logk n).

AC =
⋃

k AC k , defined analogously, difference: arbitrary fan-in allowed.
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Examples Σ = {0, 1}

1 · Σ∗ · 1 ∈ NC0

{0k1k(k ≥ 0)} ∈ AC0

PARITY := {w ∈ Σ∗|#1(w)odd} ∈ NC1
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Data Complexity

Theorem

Data complexity of FO query: Complete for logtime uniform AC0.
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Remarks

Schema and query are assumed fixed.

Database and size of the active domain are variable.

Uniform families of gates:
Total number of input gates uniquely determines size of active domain.

Example:Schema: R(ABC ),S(D),T (EF )
Number of input gates: n3 + n + n2 for some n (which is the size of the
active domain).
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